
CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 1

Common Platform Enumeration (CPE) –
Specification

Andrew Buttner, The MITRE Corporation

Neal Ziring, National Security Agency

Version 2.2 - 11 March 2009

1. Introduction ... 2

2. Use Cases.. 3
2.1. Common Names.. 3

2.2. Matching ... 3

2.3. Reporting... 3

3. Terms ... 4

4. Requirements... 5

5. CPE Names .. 7
5.1. Basic Structure .. 7

5.2. Component Syntax .. 8

Part Component .. 9

Vendor Component .. 10

Product Component ... 11

Version Component ... 12

Update Component .. 12

Edition Component .. 13

Language Component ... 13

5.3. Abbreviations .. 13

5.4. Percent Encoding .. 14

5.5. Examples ... 15

6. CPE Language ... 17
6.1. Structure .. 17

6.2. XML Representation ... 17

7. Matching .. 20
7.1. Conceptual Model ... 20

7.2. Matching Algorithm: Known Instance Based Matching .. 21

CPE Name Matching ... 22

CPE Language Matching .. 22

7.3. Matching Examples .. 23

8. CPE Dictionary ... 25
8.1. Submissions to the CPE Dictionary .. 26

9. References .. 27

Approved for Public Release; Distribution Unlimited.

07-0030

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 2

1. Introduction

Following security best practices is essential to maintaining the security of IT systems. To this

end, several specification languages exist for describing vulnerabilities, testing system state, and

expressing security checklists. But descriptions of vulnerabilities and configuration best

practices have greater utility when all participants share common names for the entities

described. Further, use of consistent and meaningful names can speed application development,

foster interoperability, improve correlation of test results, and ease gathering of metrics.

All vulnerability and configuration information items have an important distinction that affects

their use: they apply only to a particular range of IT systems, platforms, or applications. This is

so obvious that IT managers and security administrators sometimes forget about how critical it

can be. When a new vulnerability is announced, the first question most practitioners will ask is:

“which systems are vulnerable?” In prose vulnerability descriptions, informal or colloquial

names for IT platforms are adequate. Experienced system administrators and security analysts

can understand and use ad hoc names.

There is a strong trend toward automation in security practice. Automated systems cannot work

with informal or ad hoc names. To foster effective automation, the community needs a more

formal, consistent, and uniform naming scheme that allows tools (as well as human analysts and

authors) to clearly identify the IT platforms to which a vulnerability or element of guidance

applies.

Today, a popular and widespread naming scheme exists for vulnerabilities; the Common

Vulnerabilities and Exposures (CVE) naming scheme is widely used for identifying and

describing IT platform vulnerabilities. A somewhat similar scheme also exists for IT platform

configuration statements: the Common Configuration Enumeration (CCE).

This specification describes a structured naming scheme for IT platforms (hardware, operating

systems, and applications): the Common Platform Enumeration (CPE). It is based on the

generic syntax for Uniform Resource Identifiers [2]. The CPE Specification includes the naming

syntax and conventions for constructing CPE Names from product information, a dictionary (and

associated XML Schema) that holds a collection of all known CPE Names as well as a binding

of descriptive and diagnostic information, a language for creating complex platform descriptions,

and a matching algorithm. For the up-to-date CPE Dictionary, and for the complete list of

abbreviations and formatted names to be used, please visit the CPE web site at:

 http://cpe.mitre.org/

Using a clear and uniform naming specification, community members will be able to generate

names for new IT platforms in a consistent and predictable way.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 3

2. Use Cases

The following list of use cases is meant to help define the purpose of CPE.

2.1. Common Names

One tool marks a statement/result as applicable to a certain type of platform(s). A second tool

imports the statement/result and takes a specific action based on the type of platform(s). The

second tool must be able to understand what the first tool is 'saying' regarding the platform type

so it can know which action to perform. In other words, the second tool must use the same term

to describe the specific platform as the first tool.

Note that the above example is very “tool” centric. This use case also applies to web services

(SOA), data dictionaries, and other data related uses.

2.2. Matching

A configuration guide might be applicable for all versions of a certain Operating System (OS)

platform and be assigned a CPE Name that represents this. A tool might query a system and

determine a more specific CPE Name that includes an exact version, or maybe determine a

complex platform description utilizing the CPE Language. When the guide is evaluated, the tool

must be able to determine that the CPE Name (or CPE Language statement) assigned to the

system is a member of the more general CPE Name assigned to the guide.

2.3. Reporting

When used in reports about a specific system or a group of systems, a CPE Name allows

correlation of results with additional sources. For example, a report may be generated about

existing systems identified on a given network. If a CPE Name is provided for each system, that

identifier can be used to research a 3rd party site about possible vulnerabilities that are applicable

for that type of platform.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 4

3. Terms

The following terms are used throughout this specification:

CPE Name: A unique collection of components given to a specific platform type.

Platform: An IT system that is made up of hardware, applications, an operating system,

and other possible parts.

Platform Part: An individual section of high-level platform information. Many parts

have been identified: hardware, operating system, application.

Component: A specific facet of platform information. For example, a vendor name or a

version number.

CPE Dictionary: A collection of official CPE Names along with any necessary

supporting information (title, references, automated check, etc.)

CPE Language: A method for combining multiple CPE Names to describe a complex

platform type.

Matching: The process of determining if a given CPE Name or CPE Language

statement specifies a platform that is defined by a set of known CPE Names.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 5

4. Requirements

For naming IT platforms subject to vulnerability and configuration guidance, patching and

remediation, asset management, and other security related tasks, there are many distinct parts of

a platform that need to be addressed.

Hardware– the physical platform supporting the IT system. The type and model of hardware

can be relevant for some guidance and vulnerabilities.

Operating System – the operating system controls and manages the IT hardware and supports

applications. The operating system type, version, edition, and upgrade status are almost

always relevant for vulnerability descriptions and guidance.

Application Environment – software systems, servers, and packages installed on the system

are often relevant for vulnerability assessment and guidance. The diversity of applications

that may be installed on a modern IT platform is very great, but typically a specific piece of

guidance or a specific vulnerability description depends on only one or two applications.

 A CPE Name MUST be able to express each type of platform part described above.

Security guidance information and vulnerability information apply to a wide range of product

and system categories. For example, some vulnerabilities affect an entire product line, while

others affect only a particular product release or version. Some guidance applies to entire

product family or system type, but other guidance can apply only to a particular version of an

application running on a particular OS release.

 CPE MUST be able to express platform information across a wide range of specificity.

Note that the use of broader CPE Names requires less verbosity but also is not very “future

proof”, meaning that new versions of a platform may be released that have changed in such a

way that the original guidance associated with the broad CPE Name does not apply. Again, this

can be very dangerous and used with caution.

Also note that this wide range of specificity is not meant to enable the transferring of information

about a system. In other words, CPE is not intended to be used to used to share information

characterizing a specific system, it is designed to enumerate different platform types.

 The CPE Specification SHALL focus on enumerating platform types.

There are many real world cases where the distinction between languages is significant and

necessary when defining a target platform.

 A CPE Name MUST be able to include the language a particular platform supports.

Along with expressive names, support for automated checking of systems against the named

platform type should be defined in the current specification. The CPE Dictionary can include a

link with each CPE Name to a check written in the Open Vulnerability and Assessment

Language (OVAL [3]); this check can be used, with respect to an IT system, to determine

whether the system is an instance of the named platform.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 6

 The CPE Specification MUST define some means to specify concrete platform identification

tests.

A general requirement for the naming structure is that the set of platforms identified by a long

name should be a subset of the set of platforms identified by a shorter initial portion of that same

name, thus allowing matching to take place. This is called the "prefix property". For example,

redhat:enterprise_linux:4 would be a subset of redhat:enterprise_linux.

 Each CPE Name MUST exhibit the prefix property.

Additionally, CPE Names should be specified such that there is a single naming convention

producing a single abbreviation for relevant terms, instead of allowing multiple different names

that all mean the same thing. The enforcement of a single name will be accomplished through

the specification and the official CPE Dictionary. Where the specification does not define

specific structure, (for example, information beyond the vendor/product/version components)

one should refer to the CPE Dictionary to make sure a similar name does not already exist.

 The CPE Specification MUST enforce the creation of unique terms for a given name.

Finally, many IT vulnerabilities and guidance items depend on configuration, but that is not part

of what CPE provides. For example, the desired value of a particular setting is not something to

be described using CPE. Another example of something not targeted by CPE is whether a

particular service is enabled or not. CPE is meant to provide a structured name for a given

platform type: installed hardware, operating system, and applications.

 CPE Names SHALL NOT be used to express aspects of system configuration.

One of the goals of the CPE Specification is to outline a way for unique names to be created in a

defined way. For example, if two people were to try to create a new CPE Name for the same

application, the hope is that by following the specification, that they will come up with the same

name. It is realized though that this is unrealistic for a requirement. Instead, the CPE

Specification is used more as a guide to help in the creation of new CPE Names.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 7

5. CPE Names

This section explains the syntax for the representation of CPE Names, and provides several

illustrative examples. Each CPE Name defines a set of platform types. Another way of thinking

about a CPE Name is that it identifies a bucket of related platform types. How each bucket

relates to an external entity is beyond the scope of CPE, and is something that the data producer

should define. All CPE is trying to do is define these buckets and present a common name for

each.

For example, consider two security configuration guides for Windows XP each written by a

different producer. One producer may choose to tag the guide with the union of all CPEs for all

known versions of XP for which the guide applies, with the expectation of updating the CPE tags

as appropriate if/when new versions of XP become available. But the other producer may choose

to tag the guide with "Windows XP", despite the fact that the guide does not apply to some

current or future versions of Windows XP. Both approaches are consistent with the CPE

specification, but what can be assumed by users about the relationship between the guides and

certain platform types is very different. The user must obtain this information from the guide

author.

This section of the specification helps explain how to create a CPE Name for a given bucket.

When questions arise about terms to be used, the CPE Dictionary should be consulted for any

existing related names whose terms could be copied. If the dictionary does not provide any help,

then the CPE Community should help decide what is the best route forward for a particular

name. For example, if there is a question about what to use as the Product Component, polling

the CPE Community should be considered. In the end, all that really matters is that the CPE

Name is unique.

5.1. Basic Structure

A CPE Name is a percent-encoded URI [2] with each name starting with the prefix (the URI

scheme name) “cpe:”. Note that the scheme "cpe:" is not registered as an official URI scheme

with IANA.
1

Each platform can be broken down into many distinct parts. A CPE Name specifies a single part

and is used to identify any platform that matches the description of that part. The distinct parts

are:

 Hardware Part - This part identifies hardware aspects of the IT platform and denotes

things like a chassis, module, card, or other physical aspect of a platform. This can

include virtualized or shared hardware.

1
 Registration is something that might be considered in the future, but currently is not seen as something worth the

effort to accomplish. It is unknown what the benefits of registration would be.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 8

 Operating System Part - This part identifies operating system aspects of the IT platform

by describing an operating system running on the platform. Note that multi-processor

devices and distributed systems may incorporate multiple operating systems.

 Application Part - This part identifies relevant applications, services, and packages

installed on the IT platform. If a system includes multiple applications, then multiple

CPE Names may apply to it.

The specific part being enumerated is distinguished by a single letter code at the beginning of the

name. The next section defines the syntax of individual components fully.

Note that the distinction between OS and Application is currently a bit of a grey area. The

argument could be made that the OS is just another application. Also, the difference between

editions of an OS is often just the packages (applications) that are bundled with it. In this case,

should there be different CPE Names for the different editions of the OS? Or should it just be a

single OS name and a collection of Application names? This is an area that will hopefully

become better defined as the community uses the specification and more is learned about the

issue. For now, a CPE Name will be available for each edition as this is more natural for the

community and aligns with previous naming conventions. The individual packages can also be

identified by specific application names.

5.2. Component Syntax

The syntax of CPE Names is tightly controlled to foster creation and maintenance of unique

names. One of the requirements of CPE is that there be only one way to state a specific platform

name and to accomplish this, the exact syntax and abbreviations used must be strictly enforced.

This section tries to explain the logic that is followed when creating a new CPE Name. Careful

application of this logic will help keep new CPE Names following a consistent naming

convention. Unfortunately, due to the sheer quantity of possible CPE Names, the entire list of

CPE Names can not be included in this specification. Please visit the CPE web site for an up to

date dictionary of official CPE Names.

CPE names are case-insensitive. The components “WebLogic” and “weblogic” are equivalent.

To reduce potential for confusion, all CPE Names should be written in lowercase.

Each CPE Name consists of one or more components, separated by colons. The first component

identifies the platform part being specified, the second component identifies a vendor or supplier

of the element, the third component identifies the product name, the forth component states a

version of the product, the fifth component is used for update or service pack information, the

sixth component identifies an edition, and the seventh component is used to specify

internationalization information. Figure 1 shows the basic syntax of a CPE Name.

Figure 1 – CPE Name Structure

cpe:/ {part} : {vendor} : {product} : {version} : {update} : {edition} : {language}

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 9

Empty components are legal; they designate a part of the platform name for which any aspect of

the platform is valid. For example, the CPE Name below designates all Professional editions of

Microsoft Windows XP, regardless of service pack level.

cpe:/o:microsoft:windows_xp:::pro

Note that the above example does not identify a platform with Windows XP and no Service Pack

(i.e. the initial release of XP), but rather it identifies a platform with Windows XP regardless of

which service pack (or no service pack) has been installed. This will be discussed more in the

Update Component section.

Also note that in an effort to provide consistency and keep the specification simple, no

distinction is made between components that can and can not be left empty. At this time it is

unknown if there is a meaningful name that leaves that Part component empty, but it has been

decided that the consistency is more important in this case.

It is often necessary to use a CPE Name when identifying a specific release of a given platform.

If attempting to create a CPE Name for this, and a specific component is not applicable to the

given platform, then the term '-' should be used. Note that use of the '-' term is different than

leaving the component blank, even though in practice both options might identify with the same

set of platform types. For example, an application may not have different editions. A CPE

Name for such an application may use the '-' term for the edition component.

cpe:/a:acme:product:1.0:update2:-:en-us

The platform type that the CPE Name above identifies may initially be the same as the platform

type identified by the following CPE Name that uses a blank edition component:

cpe:/a:acme:product:1.0:update2::en-us

Remember that the blank component is used to identify the platform type regardless of the blank

component. So in this case, it would identify every edition of the "Acme Product 1.0 Update 2

English". The problem is that in the future, the vendor may in fact decide to release a new

edition of the product. For example:

cpe:/a:acme:product:1.0:update2:pro:en-us

Looking back at the first two examples, the CPE Name that used the '-' term would not match

this new release, while the CPE Name that used the blank component would match.

The '-' term might also be used to describing an initial release if a platform does identify with a

given component but no term is commonly used to describe it. An example of this might be the

initial release of an application before any updates have been released. The very first release of

an application might be known as "Acme Product 1.0". A few months later an update is released

by the vendor and the once applied, the platform is known as "Acme Product 1.0 Update 1". In

this case the two CPE Names would be:

cpe:/a:acme:product:1.0:-

cpe:/a:acme:product:1.0:update1

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 10

Again note that the CPE Name cpe:/a:acme:product:1.0: with a blank update component would

match both of the names above.

It is important to note that when a CPE Name is being created for a specific platform type (i.e. a

specific release of an application) then the hyphen should be used at all times (when a vendor

term is not available) instead of a blank component. The blank component is to be used only

when a more general platform type is being enumerated. (i.e. any version of an application)

Part Component

The first component in a CPE Name is a single letter code that designates the particular platform

part that is being identified. The following codes are defined for CPE 2.0.

 h = hardware part

 o = operating system part

 a = application part

Additional character codes may be added as necessary in a future version of this specification.

For example, maybe 'd' for driver, 'l' for library, 'r' for runtime environment, or v for

virtualization.

Vendor Component

The second component of a CPE Name is the supplier or vendor of the platform part. The

vendor component of a name might be a source of ambiguity because there are many ways to

express the names of companies and other organizations. For CPE, the name used for a supplier

should be the highest organization-specific label of the organization's DNS name. Even if the

domain name is different than the company name, it is still recommended to use the domain

name for the CPE Name. The table below shows some representative examples.

Organization Full Name DNS Domain CPE component

Cisco Systems, Inc. cisco.com cisco

The Mozilla Foundation mozilla.org mozilla

University of Oxford oxford.ac.uk oxford

Note that abbreviations should not be used in the vendor component and instead the DNS name

should be used as found.

Many big organizations register multiple names (e.g. "hewlett-packard.com" and "hp.com") but

most of the time, the company uses one of them as the official name in their advertisements and

documentation. That is the name CPE should use. If it is still ambiguous after that, then CPE

will need to get guidance from the vendor or community. Using the full corporate name would

create much longer names, as well as potential character encoding issues.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 11

If two different vendors share the same organization-specific label but with a different DNS

suffix then the full DNS name should be used. For example, if cpe:/a:acme already exists in the

CPE Dictionary and this refers to the vendor site www.acme.com, then a new name for the

vendor www.acme.org should have a CPE Name of cpe:/a:acme.org.

In some cases, especially with open source software, a vendor may not have a qualified DNS

name. For these situations, the term used in the vendor component should be formed using the

most widely known form of the vendor name, replacing spaces with underscores. For example,

the vendor Best Software may not have a qualified DNS name, so a CPE Name for their

application ABC123 would be as follows:

cpe:/a:best_software:abc123

For applications that do not have a vendor or organization associated with them, this component

should use a developer's name. For example, there are a number of shareware tools that have

been developed by an individual and posted to the web. They don't have a vendor, just a name of

a developer. Note that multi-word names should use underscores instead of spaces.

cpe:/a:jon_smith:tool_name:1.2.3

For situations when a vendor name changes due to marketing or acquisition reasons, the original

CPE Name(s) with the old vendor name will remain unchanged. A new CPE Name(s) with the

new vendor name will be created for new products released under the new name. Although this

process breaks the ability for matching to occur across the vendor name transition, the simplicity

of the process is felt to be a worthwhile benefit.

Product Component

The third component of a CPE Name is the product name of the platform part. To determine the

string to use for the product component, one should try to find the most common and

recognizable name for the product. Possible things to consider are marketing materials, API

return values, product documentation, etc. Unfortunately there is no clear cut definitive way of

doing this, so help from the vendor and/or community will often be needed.

Multi-word product names and designations should be spelled out in full, replacing spaces with

underscores. The example below shows how this would look for the Zone Labs ZoneAlarm

Internet Security Suite version 7.0.

cpe:/a:zonelabs:zonealarm_internet_security_suite:7.0

Multi-word product names may be shortened when doing so would not make the CPE Name

ambiguous and when the vendor has designated a particular "official" abbreviation in product

descriptions. This helps keep the name more reasonable in length. For example, "Internet

Explorer" should be abbreviated as "ie", and "Java Runtime Environment" should be abbreviated

as "jre". A list of community product name abbreviations will be maintained at the CPE web

site.

Product Name CPE Abbreviation

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 12

Product Name CPE Abbreviation

Internet Explorer ie

Java Runtime Environment jre

As with the vendor component, if a product has a name change, existing CPE Names should not

be modified. Rather, new names that are created with a new version of the product should use

the new product name.

Version Component

The forth component of a CPE Name is the version of the platform part. The version should be

represented in the same format as seen within the product. For example, use periods, dashes, etc.

as the delimiter in the same way as the product.

The following example denotes Adobe Reader version 8.1

cpe:/a:adobe:reader:8.1

Note that there is currently no way to separate major and minor versions into different

components. If a CPE Name is needed for all Adobe Reader applications that have a major

version of 8, then a separate CPE should be created as follows:

cpe:/a:adobe:reader:8

Update Component

The fifth component of a CPE Name is used for update or service pack information. Sometimes

this is referred to as point releases or minor versions. The technical difference between version

and update will be different for certain vendors and products. The use of existing CPE Names

should be used to determine what is best for new names.

The following example denotes Red Hat Enterprise Linux 4.0 Update 4.

cpe:/o:redhat:enterprise_linux:4:update4

Many times, products are initially released without a defined update. For example there is not an

"update 0" for Enterprise Linux and there is not a "Service Pack 0" for Microsoft Windows 2000.

If it is desired to specifically identify this initial release, then the vendor's term for initial release

should be used in the update component. For example, Red Hat uses the term "ga" for General

Availability, and the CPE Name for the initial release of Enterprise Linux 4 would be:

cpe:/o:redhat:enterprise_linux:4:ga

If there is no vendor term for an initial release, or if there is no commonly used term, then the '-'

character should be used when creating a CPE Name for that initial release.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 13

Edition Component

The sixth component of a CPE Name is the edition of the platform part. Abbreviations should be

used where appropriate. Please see the section 5.3 for a list of valid abbreviations.

The following example denotes all versions of Microsoft Windows 2000 Service Pack 4

Professional Edition.

cpe:/o:microsoft:windows_2000::sp4:pro

The Edition Component is also used to define specific target hardware and software architectures

that need to be named. In a way, we are treating these as different editions of the platform. For a

hardware example, an application may be developed for both the i386 and x64 architectures, and

each edition needs a different name. For a target software implementation an application may be

developed to run on Windows, Linux, or Macintosh OS X.

Note that the idea of a target hardware or software architecture is different than the actual

hardware or software of the platform. The notion described above is used to distinguish and

identify different editions of the given platform part.

Target hardware and software environment names will be appended to the end of any other

names in the Edition component. Where both target hardware and software architectures are

named, the software name will be listed first.

Language Component

The seventh and final component of a CPE Name is the language associated with the specific

platform. This component should be represented by a valid language tag as defined by IETF

RFC 4646 entitled Tags for Identifying Languages. [6] Note that while any valid language tag is

acceptable, CPE Names should generally only use tags containing language and region codes.

The following example is the CPE Name associated with a platform that has the traditional

Chinese version of Mozilla Firefox version 2.0.0.6 for the Mac OSX operating system. Note that

since this CPE Name pertains to all updates of this version the update component has been left

blank.

cpe:/a:mozilla:firefox:2.0.0.6::osx:zh-tw

For a complete BNF grammar that defines what is acceptable in a CPE Name, please see

Appendix A.

5.3. Abbreviations

Some words and phrases appear frequently in IT product designations. Including these common

words in CPE Names would be wasteful, and contrary to the objective of making CPE Names

compact and easy to use. To help shorten some of the longer CPE Names, abbreviations are

used where appropriate. Note that each phrase must be associated with only one abbreviation.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 14

The table below lists abbreviations for common terms and multi-word constructions that should

be applied in selecting CPE Name components. For an up-to-date list of abbreviations, please

visit the CPE web site at http://cpe.mitre.org/.

Full Designation CPE Abbreviation

advanced adv

professional pro

server srv

standard std

edition ed

version 3.4 3.4

patch level 3 pl3

release 3 r3

release candidate 2 rc2

service pack 4 sp4

support pack 2 sup2

service release 2 sr2

security rollup sru

general availability ga

5.4. Percent Encoding

A CPE Name is represented by a URI that is in its post-encoded form. In other words, the

standard URI percent-encoding mechanism must be used to represent a number of reserved

characters. A percent-encoded octet is encoded as a character triplet, consisting of the percent

character "%" followed by the two hexadecimal digits representing that octet's numeric value.

Please note that if the "%" character is to be used outside of this encoding, then it would itself

have to be encoded.

The following is a list of characters that must be percent encoded if they are used within a

component:

 colon (:) – %3A – used to separate the components in a name

 slash (/) – %2F – URI reserved character, gen-delims

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 15

 question mark (?) – %3F – URI reserved character, gen-delims

 pound sign (#) – %23 – URI reserved character, gen-delims

 open bracket ([) – %5B – URI reserved character, gen-delims

 close bracket (]) – %5D – URI reserved character, gen-delims

 at sign (@) – %40 – URI reserved character, gen-delims

 exclamation point (!) – %21 – URI reserved character, sub-delims

 dollar sign ($) – %24 – URI reserved character, sub-delims

 ampersand (&) – %26 – URI reserved character, sub-delims

 apostrophe (') – %27 – URI reserved character, sub-delims

 open parenthesis (() – %28 – URI reserved character, sub-delims

 close parenthesis ()) – %29 – URI reserved character, sub-delims

 asterisk (*) – %2A – URI reserved character, sub-delims

 plus sign (+) – %2B – URI reserved character, sub-delims

 comma (,) – %2C – URI reserved character, sub-delims

 semi-colon (;) – %3B – URI reserved character, sub-delims

 equal sign (=) – %3D – URI reserved character, sub-delims

 percent-sign (%) – %25 – used for character encoding in URIs.

 angle bracket (<) – %3C – used in XML

 angle bracket (>) – %3E – used in XML

 double quote (") – %22 – used in XML

The percent-encoding mechanism is a frequent source of variance among otherwise identical

URIs. Some URI producers percent-encode octets that do not require percent-encoding,

resulting in URIs that are equivalent to their non-encoded counterparts. These URIs can be

normalized by decoding any percent-encoded octet that corresponds to an unreserved character

(unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~").

When matching is performed, each component should be decoded when used during

comparisons. Note that the components of CPE Name must be parsed and separated before the

percent-encoded octets within those components can be safely decoded, as otherwise the data

may be mistaken for component delimiters.

5.5. Examples

This example name below represents a typical CPE Name that refers to the Microsoft Windows

2000 operating system, all editions and update levels.

cpe:/o:microsoft:windows_2000

This example CPE Name below identifies Microsoft‟s Windows XP operating system,

Professional Edition, update level “Service Pack 2”.

cpe:/o:microsoft:windows_xp::sp2:pro

This example name below refers to Red Hat Enterprise Linux 3 Advanced Server.

cpe:/o:redhat:enterprise_linux:3::as

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 16

This example specifies an application, specifically the Apache Foundation HTTP server version

2.0.52.

cpe:/a:apache:httpd:2.0.52

This example name below refers to a particular web browser, regardless of any hardware or

particular OS on which it is running.

cpe:/a:microsoft:ie:6.0

 This example name below refers to a Cisco model 3825 integrated services router.

cpe:/h:cisco:router:3825

The example name below identifies a particular laptop computer hardware platform. The vendor

is Dell Computer, the product line name is "Inspiron", and the version (or model in this example)

number is 8500. Note that the platform enumerated below might be made up of a number of

different peripherals, each assigned their own CPE Name if needed.

cpe:/h:dell:inspiron:8500

CPE Names may also be used to identify virtual hardware, in the context where the virtual

hardware platform serves the same role as a similar real hardware platform. The CPE Name

below shows an example for a virtual hardware platform.

cpe:/h:emc:vmware_esx:2.5

It is quite possible that a vendor, perhaps for marketing purposes, may use different names for

identical hardware and software platforms. This could occur for regional versions with different

languages, or different vertical markets each with a need for the same tool. In these cases, a

different CPE Name will be used for each of the different vendor-assigned names. CPE in

general tries to mimic the product naming structures used by the vendors, while imposing

uniform structure and matching semantics.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 17

6. CPE Language

An individual CPE Name addresses a single part of an actual system. To identify more complex

platform types, there needs to be a way to combine different CPE Names using logical operators.

For example, there may be a need to identify a platform with a particular operating system AND

a certain application. The CPE Language exists to satisfy this need, enabling the CPE Name for

the operating system to be combined with the CPE Name for the application.

The CPE Language can be thought of as an extension of the CPE Name syntax above. The

syntax for CPE Names has been kept simplistic and restrictive, thus allowing easy adoption and

quick acceptance within the community. The CPE Language on the other hand is meant to

absorb the complexity that was left out of CPE Names. This will result in more powerful

platform identification. Changes as the specification evolves will be limited to the language,

allowing users to rely on the stability of CPE Names.

The CPE Language is essentially a Boolean expression that (1) allows users to qualify applicable

platforms, and (2) allows testing tools to determine whether any target system is an instance of

that platform.

6.1. Structure

The basic building block of the CPE Language is referred to as the Logical Test. This is a

logical conjunction (AND) or disjunction (OR) of one or more CPE Names. Individual logical

tests can also be negated (inverted). Nested logical tests allow the user to express the platform as

any logical combination of individual CPE Names.

6.2. XML Representation

This section defines a concrete representation of the CPE Language in XML using both core

XML syntax and XML Namespaces. CPE Language elements belong to the namespace

“http://cpe.mitre.org/language/2.0”. The recommended namespace prefix is “cpe”.

The example below gives an idea of how the XML representation of the CPE Language is used

to identify a complex platform.

Figure 2 – example XML representation

<?xml version="1.0" encoding="UTF-8"?>

<cpe:platform-specification

xmlns:cpe="http://cpe.mitre.org/language/2.0">

 <cpe:platform id="123">

 <cpe:title>Microsoft Windows XP with Adobe Reader</cpe:title>

 <cpe:logical-test operator="AND" negate="FALSE">

 <cpe:fact-ref name="cpe:/o:microsoft:windows_xp" />

 <cpe:fact-ref name="cpe:/a:adobe:reader" />

 </cpe:logical-test>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 18

 </cpe:platform>

 <cpe:platform id="456">

 <cpe:title>Sun Solaris 5.8 or 5.9 or 5.10</cpe:title>

 <cpe:logical-test operator="OR" negate="FALSE">

 <cpe:fact-ref name="cpe:/o:sun:solaris:5.8" />

 <cpe:fact-ref name="cpe:/o:sun:solaris:5.9" />

 <cpe:fact-ref name="cpe:/o:sun:solaris:5.10" />

 </cpe:logical-test>

 </cpe:platform>

 <cpe:platform id="789">

 <cpe:title>Microsoft Windows XP with Office 2003 or

2007</cpe:title>

 <cpe:logical-test operator="AND" negate="FALSE">

 <cpe:fact-ref name="cpe:/o:microsoft:windows_xp" />

 <cpe:logical-test operator="OR" negate="FALSE">

 <cpe:fact-ref name="cpe:/a:microsoft:office:2003" />

 <cpe:fact-ref name="cpe:/a:microsoft:office:2007" />

 </cpe:logical-test>

 </cpe:logical-test>

 </cpe:platform>

</cpe:platform-specification>

The rest of this section describes the individual elements that may appear in the XML

representation of the CPE Language. For full details, see the schema presented in Appendix B.

<platform-specification>

This element is the root element of a CPE Language XML documents and therefore acts as a

container for child platform definitions.

Content: elements

Cardinality: 1

Parent Elements: none

Attributes: none

Child Elements: <platform>

<platform>

The platform element represents the description or qualifications of a particular IT platform type.

The platform is defined by one or more logical-test child elements. The id attribute holds a

locally unique name for the platform. There is no defined format for this id, it just has to be

unique to the containing CPE Language document.

Content: elements

Cardinality: 1-n

Parent Elements: <platform-specification>

Attributes: id

Child Elements: <title>, <remark>, <logical-test>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 19

<title>

The optional title element may appear as a child of a platform element, to provide a human-

readable title for it. To support uses intended for multiple languages, this element supports the

„xml:lang‟ attribute. At most one title element can appear for each language.

Content: string

Cardinality: 0-n

Parent Elements: <platform>

Attributes: xml:lang

Child Elements: none

<remark>

The optional remark element may appear as a child of a platform element. It provides some

additional description. Zero or more remark elements may appear. To support uses intended for

multiple languages, this element supports the „xml:lang‟ attribute. There can be multiple

remarks for a single language.

Content: string

Cardinality: 0-n

Parent Elements: <platform>

Attributes: xml:lang

Child Elements: none

<logical-test>

The logical-test element appears as a child of a platform element, and may also be nested to

create more complex logical tests. The content consists of one or more elements: fact-ref, and

logical-test children are permitted. The operator to be applied, and optional negation of the test,

are given as attributes.

Content: elements

Cardinality: 0-n

Parent Elements: <platform>, <logical-test>

Attributes: operator, negate

Child Elements: <fact-ref>, <logical-test>

NOTE - The following operators are permitted: "AND", "OR"

<fact-ref>

The fact-ref element appears as a child of a logical-test element. It is simply a reference to a

CPE Name that always evaluates to a Boolean result.

Content: none

Cardinality: 0-n

Parent Elements: <logical-test>

Attributes: name

Child Elements: none

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 20

7. Matching

Matching is the process of determining if a given CPE Name or CPE Language statement

specifies a platform that is defined by a set of known CPE Names.

For example, when a checking or analysis tool tests a real IT target system, it must be able to

decide whether any given CPE Name corresponds to that system, and vice-versa. If a CPE Name

has an associated OVAL Definition, and the definition evaluates to true, then the system is said

to be an instance of that name. But not every CPE Name will have an OVAL Definition

associated with it. This is especially true if a CPE Name has been created by an individual

author or application to identify a new or unusual platform, or if the CPE Language has been

used to describe a complex platform. For these cases, there is a defined process for how to

match a CPE Name or a CPE Language description against an actual system based on other

known CPE Names (ones that have been matched via an OVAL Definition). This is called

matching.

Matching helps define the relationship between different CPE Names (or language statements)

and follows the hierarchical relationship built into the naming format. It is important to note that

it will often be the case that different relationships between CPE Names and external data

elements will also be asserted. The "tagging" of data elements with CPE Names does not imply

the type of external relationship being used. It is important that the data producer defines the

type of relationship it has with CPE. It is also important to note that matching does not carry

over to this relationship with external enties and that one has to be careful about assuming the

hierarchical relationship between CPE Names would also apply to the external relationship. It is

not always the case.

By way of an example, consider a vulnerability that has been "tagged" with the CPE Name

cpe:/o:microsoft:windows_xp. One can not assume that this vulnerability applies to an XP

Service Pack 2 system as the relationship may have been defined as follows: "the vulnerability

may or may not apply to a platform matching the CPE Name, but definitely does not apply to

those that don't match". Even though cpe:/o:microsoft:windows_xp::sp2 matches the original

CPE Name used by the tag, the same relationship outlined above does not hold. Think about

Service Pack 1 ... it is possible according to the original relationship that the vulnerability might

affect this platform, but trying to follow the same relationship with the CPE Name related to

service pack 2 would say that sp1 does not apply, a contradiction would exist.

Remember that the defined relationship between a CPE Name and an external entity does not

necessarily carry over during matching.

7.1. Conceptual Model

The conceptual model for matching consists of two steps:

1. Make a list of all the CPE Names and logical connections.

2. For each name, check whether the target system has the hardware, software, or operating

system indicated by the name. If the check succeeds for all names, and satisfies the

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 21

logical constraints, then the target is an instance of the CPE Name or Language

representation.

While the conceptual model is very simple, it will not be practical for all analysis tools. It is

very difficult, in general, to check the constituent parts of an IT system.

In more realistic situations, analysis tools will be supplied with standard dictionaries of CPE

Names for common hardware, OS, and application products. Using these dictionaries, and the

OVAL Definitions included in them, an analysis tool can assemble a known set K of CPE Names

of which the target platform is known to be an instance. Then, given any specific CPE Name or

Language expression, the tool can ascertain whether or not the target is an instance of it. This is

called known instance based matching. Figure 3 illustrates the basic concept of known instance

based matching; a more formal description is given below.

Figure 3 – Conceptual Model for Known Instance Based Matching

Note: there is no mechanism in CPE to stipulate platform qualification based on the absence of a

system constituent. All matching is positive, not negative.

7.2. Matching Algorithm: Known Instance Based Matching

Matching consists of two algorithms.

1. CPE_Name_Match – this algorithm accepts a set of CPE Names K and a candidate CPE

Name X. It returns true if X matches any member of K, and false otherwise.

2. CPE_Language_Match – this algorithm accepts a set of CPE Names K and a candidate

expression E. It returns true if the expression can be satisfied by name matching against

the members of K, and false otherwise.

The algorithms are expressed below in pseudo-code. Sample implementations of the algorithms

will be provided separately at the CPE web site.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 22

CPE Name Matching

Inputs:

 K - A list of m CPE Names, K = {K1, K2, …, Km} .

 X - A candidate CPE Name

Output:

 True if X matches K, false otherwise.

Algorithm:

function CPE_Name_Match(K, X)

 for each N in K do

 if length(N)>= length(X) then

 r := false.

 for i := 1 to length(X) do

 if comp(X,i) = comp(N,i) or

 comp(X,i) = ""

 then

 r := true.

 else

 r := false.

 break.

 end

 end

 if r = true then

 return true.

 end

 end

 end

 return false.

end

Notes:

 The function length(N) returns the number of components in a CPE Name N.

 The function comp(N,i) returns the i'th component of the CPE Name N as a string.

CPE Language Matching

Inputs:

 K – a set of m known CPE Names K = {K1, K2, …, Km} .

 E – an expression in the CPE Language, represented as the XML infoset for the platform

element (see Section 6)

Output:

 True if E can be satisfied by language matching against K, false otherwise.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 23

Algorithm:

function CPE_Language_Match(K, E)

 if element(E) = "platform" then

 for each C in children(E) do

 if element(C) = "logical-test" then

 return CPE_Language_Match(K, C).

 end

 end

 else if element(E) = "fact-ref" then

 return CPE_Name_Match(K, attribute(E, "name")).

 else if element(E) = "logical-test" then

 count := 0.

 len := 0.

 answer := false.

 for each C in children(E) do

 len := len + 1.

 if (CPE_Language_Match(K, C)) then

 count := count + 1.

 end

 end

 if attribute(E, "operator") = "AND" then

 if count = len then

 answer := true.

 end

 else if attribute(E, "operator") = "OR" then

 if count > 0 then

 answer := true.

 end

 end

 if attribute(E, "negate") = true then

 answer := ~answer.

 end

 return answer.

 else

 return false.

 end

end

Notes:

 The function element(E) returns the element name of an XML infoset node as a string.

 The function attribute(E, A) returns the value of E's attribute A as a string.

7.3. Matching Examples

The examples below illustrate known instance based matching.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 24

In the first example, evaluating OVAL definitions from the CPE Dictionary against a target

system results in two CPE Names. These CPE Names are collected into the set K of known

instances.

K = {"cpe:/o:microsoft:windows_2000::sp3:pro", "cpe:/a:microsoft:ie:5.5"}

A rule in a security guidance checklist describes some settings to check on a system running

Microsoft Windows 2000. The rule is marked with a CPE Name indicating this is called the

candidate name X.

X = "cpe:/o:microsoft:windows_2000"

There are three components in X: C1=o, C2=microsoft, C3=windows_2000. Stepping through the

matching algorithm, we see that each component matches the corresponding component of the

first CPE Name in K. So, the algorithm returns true and the rule can be applied to the target

system.

In the second example, testing OVAL definitions from the CPE Dictionary against a target

system results in two CPE Names.

K = {"cpe:/o:sun:sunos:5.9:::en-us", "cpe:/a:bea:weblogic:8.1",}

A rule in a security vulnerability report designates the vulnerability as applicable for BEA

WebLogic application server 8.0 running on Solaris 8 or 9 (SunOS 5.8 or 5.9). This is

represented by the following CPE Language statement:

X = <cpe:platform id="123">

 <cpe:title>Sun Solaris 5.8 or 5.9 with BEA Weblogic 8.1 installed</cpe:title>

 <cpe:logical-test operator="AND" negate="FALSE">

 <cpe:logical-test operator="OR" negate="FALSE">

 <cpe:fact-ref name="cpe:/o:sun:solaris:5.8" />

 <cpe:fact-ref name="cpe:/o:sun:solaris:5.9" />

 </cpe:logical-test>

 <cpe:fact-ref name="cpe:/ a:bea:weblogic:8.1" />

 </cpe:logical-test>

 </cpe:platform>

Stepping through the CPE Language Matching algorithm, we see that there are the top-level

logical test has the operator "AND" and two clauses: one of them a nested logical test and the

other a simple fact-ref. The nested logical test evaluates to true, because one of the two simple

fact-refs matches a member of K. The other fact-ref is also true, because it also matches a

member of K.

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 25

8. CPE Dictionary

The CPE Dictionary is the official collection of CPE Names. Its purpose is to provide a source

of all known CPE Names as well as bind descriptive prose and diagnostic tests to a CPE Name.

This metadata includes a title, notes, and an automated check to determine if a given platform

matches the CPE Name.

The primary format of the CPE Dictionary is an XML document. The format is defined using a

XML Schema[1]; the full schema appears in Appendix C. The schema defines two main

elements:

 <cpe-list> – the root element and a container for multiple <cpe-item> elements.

 <cpe-item> – holds information about an individual CPE Name, including a title, a

list of zero or more descriptive notes, a list of zero or more references, and zero or more

diagnostic checks.

The CPE Dictionary may be used by IT testing and report generation tools, as well as APIs, web

services, etc., to get friendly names and descriptions for the compact CPE Names used in

machine-readable guidance items and vulnerability definitions.

Figure 4, below, shows a short sample CPE Dictionary.

Figure 4 – A Short CPE Dictionary

<?xml version="1.0">

<cpe-list xmlns="http://cpe.mitre.org/dictionary/2.0"

 xmlns:cpe_dict="http://cpe.mitre.org/dictionary/2.0">

 <cpe-item name="cpe:/o:redhat:enterprise_linux:3">

 <title>Red Hat Enterprise Linux 3</title>

 </cpe-item>

 <cpe-item name="cpe:/o:sun:sunos:5.8">

 <title>Sun Microsystems SunOS 5.8</title>

 <notes>

 <note>Also known as Solaris 8</note>

 </notes>

 </cpe-item>

 <cpe-item name="cpe:/o:microsoft:windows_2003">

 <title>Microsoft Windows Server 2003</title>

 <check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">

 oval:org.mitre.oval:def:128

 </check>

 </cpe-item>

</cpe-list>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 26

8.1. Submissions to the CPE Dictionary

Vendors and community members can submit new names to the CPE Dictionary by emailing

valid XML to cpe@mitre.org. The XML file should correspond to the dictionary schema that is

outlined in Appendix C. Each submission can then be automatically imported into the official

dictionary after a quick review process.

New submissions will be reviewed for correctness. This review will be used to make sure

proposed names follow the guidelines set forth in this specification. Every effort will be made to

make sure this process happens in the least amount of time possible.

Internal Process

 receive submission file from community

 validate the XML file

o if it fails validation, notify user and try to correct issues

 determine if the file contains new or modified submissions

 verify content is acceptable

 add valid new submissions to CPE Dictionary

 update CPE Dictionary with accepted modifications

o deprecate any old CPE Names as necessary

 send email to community regarding status

o how many of the submissions were added

o how many of the submissions were rejected

 and why

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 27

9. References

[1] Fallside, D.C., XML Schema Part 0: Primer, W3C Recommendation,

2 May 2001.

W3C documents are available from http://www.w3.org/.

[2] Berners-Lee, T., Fielding, R., and Masinter, L., Uniform Resource Identifier

(URI): Generic Syntax, RFC 3986, January 2005.

Internet RFCs are available from http://www.rfc-editor.org.

[3] “OVAL – The Open Vulnerability and Assessment Language”, The MITRE

Corporation, September 2006.

This is the OVAL web site, http://oval.mitre.org/.

[4] Mockapetris, P., "Domain Names – Implementation and Specification", RFC

1035, November 1987.

Internet RFCs are available from http://www.rfc-editor.org.

[5] Grobauer, B., "CVE, CME, …CMSI? Standardising System Information",

Siemens AG, April 2005.

This paper introduces the Common Model of System Information, a

structured format for describing IT platforms.

[6] Phillips, A. and Davis, M., Tags for Identifying Languages, RFC 4646, September

2006.

Internet RFCs are available from http://www.rfc-editor.org.

http://www.w3.org/
http://www.rfc-editor.org/
http://oval.mitre.org/
http://www.rfc-editor.org/
http://www.rfc-editor.org/

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 28

Appendix A: CPE Name String Grammar

The BNF grammar below defines the syntax for CPE Name URIs.

cpe-name ::= "cpe:/" component-list

component-list ::= type ":" vendor ":" product ":" version ":" update ":" edition ":" lang

 type ":" vendor ":" product ":" version ":" update ":" edition

 type ":" vendor ":" product ":" version ":" update

 type ":" vendor ":" product ":" version

 type ":" vendor ":" product

 type ":" vendor

 empty

type ::= ("a" | "h" | "o")

 empty

vendor ::= string

 empty

product ::= string

 empty

version ::= string

 empty

update ::= string

 empty

edition ::= string

 empty

lang ::= langtag

 empty

string ::= (ALPHA | DIGIT | PUNC) +

PUNC ::= ("." | "_" | "-" | "~" | "%")

Where ALPHA and DIGIT are defined in [2] and langtag is defined in [6].

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 29

Appendix B: CPE Language XML Schema

The schema below specifies the XML representation of the CPE Language.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://cpe.mitre.org/language/2.0"

 xmlns:cpe="http://cpe.mitre.org/language/2.0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 This XML Schema defines the CPE Language. An individual CPE Name

 addresses a single part of an actual system. To identify more

 complex platform types, there needs to be a way to combine

 different CPE Names using logical operators. For example, there

 may be a need to identify a platform with a particular operating

 system AND a certain application. The CPE Language exists to

 satisfy this need, enabling the CPE Name for the operating system

 to be combined with the CPE Name for the application. For more

 information, consult the CPE Specification document.

 </xsd:documentation>

 <xsd:appinfo>

 <schema>CPE Language</schema>

 <author>Neal Ziring, Andrew Buttner</author>

 <version>2.2</version>

 <date>03/11/2009 09:00:00 AM</date>

 </xsd:appinfo>

 </xsd:annotation>

<!-- == -->

<!-- == -->

<!-- == -->

 <xsd:element name="platform-specification">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 This element is the root element of a CPE Language XML

 documents and therefore acts as a container for child

 platform definitions.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="platform" type="cpe:PlatformType"

 minOccurs="1" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:key name="platformKey">

 <xsd:selector xpath="cpe:platform"/>

 <xsd:field xpath="@id"/>

 </xsd:key>

 </xsd:element>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 30

<!-- == -->

<!-- ============================ PLATFORM ============================ -->

<!-- == -->

 <xsd:complexType name="PlatformType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The platform element represents the description or

 qualifications of a particular IT platform type. The platform

 is defined by the logical-test child element. The id

 attribute holds a locally unique name for the platform.

 There is no defined format for this id, it just has to be

 unique to the containing language document.

 </xsd:documentation>

 <xsd:documentation xml:lang="en">

 The optional title element may appear as a child to a

 platform element. It provides a human-readable title for it.

 To support uses intended for multiple languages, this element

 supports the ‘xml:lang’ attribute. At most one title element

 can appear for each language.

 </xsd:documentation>

 <xsd:documentation xml:lang="en">

 The optional remark element may appear as a child of a

 platform element. It provides some additional description.

 Zero or more remark elements may appear. To support uses

 intended for multiple languages, this element supports the

 ‘xml:lang’ attribute. There can be multiple remarks for a

 single language.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="title"

 type="cpe:TextType"

 minOccurs="0"

 maxOccurs=" unbounded" />

 <xsd:element name="remark"

 type=" cpe:TextType"

 minOccurs="0"

 maxOccurs="unbounded" />

 <xsd:element name="logical-test"

 type="cpe:LogicalTestType"

 minOccurs="1"

 maxOccurs="1" />

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:anyURI" use="required" />

 </xsd:complexType>

 <xsd:complexType name="LogicalTestType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The logical-test element appears as a child of a platform

 element, and may also be nested to create more complex

 logical tests. The content consists of one or more elements:

 fact-ref, and logical-test children are permitted. The

 operator to be applied, and optional negation of the test,

 are given as attributes.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="logical-test"

 type="cpe:LogicalTestType"

 minOccurs="0"

 maxOccurs="unbounded" />

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 31

 <xsd:element name="fact-ref"

 type="cpe:FactRefType"

 minOccurs="0"

 maxOccurs="unbounded" />

 </xsd:sequence>

 <xsd:attribute name="operator" type="cpe:operatorEnumeration"

 use="required" />

 <xsd:attribute name="negate" type="xsd:boolean"

 use="required" />

 </xsd:complexType>

 <xsd:complexType name="FactRefType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The fact-ref element appears as a child of a logical-test

 element. It is simply a reference to a CPE Name that always

 evaluates to a Boolean result.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="name" type="cpe:namePattern" use="required" />

 </xsd:complexType>

<!-- == -->

<!-- ========================== ENUMERATIONS ========================== -->

<!-- == -->

 <xsd:simpleType name="operatorEnumeration">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The OperatorEnumeration simple type defines acceptable

 operators. Each operator defines how to evaluate multiple

 arguments.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="AND" />

 <xsd:enumeration value="OR" />

 </xsd:restriction>

 </xsd:simpleType>

<!-- == -->

<!-- ======================== SUPPORTING TYPES ======================== -->

<!-- == -->

 <xsd:complexType name="TextType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 This type allows the xml:lang attribute to associate a

 specific language with an element's string content.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute ref="xml:lang" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- == -->

<!-- ========================== ID PATTERNS =========================== -->

<!-- == -->

 <xsd:simpleType name="namePattern">

 <xsd:annotation>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 32

 <xsd:documentation xml:lang="en">

 Define the format for acceptable CPE Names. A URN format is

 used with the id starting with the word cpe followed by :/

 and then some number of individual components separated by

 colons.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:anyURI">

 <xsd:pattern value="[c][pP][eE]:/[AHOaho]?(:[A-Za-z0-9\._\-

~%]*){0,6}"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 33

Appendix C: CPE Dictionary XML Schema

The schema below specifies the XML format for the CPE Dictionary.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://cpe.mitre.org/dictionary/2.0"

 xmlns:cpe_dict="http://cpe.mitre.org/dictionary/2.0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"

 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 This is an XML Schema for the CPE Dictionary. It is used to

 transfer a collection of official CPE Names along with any

 necessary supporting information (title, references, automated

 check, etc.). For more information, consult the CPE Specification

 document.

 </xsd:documentation>

 <xsd:appinfo>

 <schema>CPE Dictionary</schema>

 <author>Neal Ziring, Andrew Buttner</author>

 <version>2.2</version>

 <date>03/11/2009 09:00:00 AM</date>

 </xsd:appinfo>

 </xsd:annotation>

<!-- == -->

<!-- == -->

<!-- == -->

 <xsd:element name="cpe-list" type="cpe_dict:ListType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The cpe-list element acts as a top-level container for CPE

 Name items. Each individual item must be unique. Please

 refer to the description of ListType for additional

 information about the sturcture of this element.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:key name="itemURIKey">

 <xsd:selector xpath="./cpe_dict:cpe-item"/>

 <xsd:field xpath="@name"/>

 </xsd:key>

 </xsd:element>

 <xsd:element name="cpe-item" type="cpe_dict:ItemType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The cpe-item element denotes a single CPE Name. Please refer

 to the description of ItemType for additional information

 about the sturcture of this element.

 </xsd:documentation>

 </xsd:annotation>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 34

 <xsd:unique name="titleLangKey">

 <xsd:selector xpath="./cpe_dict:title"/>

 <xsd:field xpath="@xml:lang"/>

 </xsd:unique>

 <xsd:unique name="notesLangKey">

 <xsd:selector xpath="./cpe_dict:notes"/>

 <xsd:field xpath="@xml:lang"/>

 </xsd:unique>

 <xsd:unique name="checkSystemKey">

 <xsd:selector xpath="./cpe_dict:check" />

 <xsd:field xpath="@system" />

 </xsd:unique>

 </xsd:element>

<!-- == -->

<!-- ======================== SUPPORTING TYPES ======================== -->

<!-- == -->

 <xsd:complexType name="GeneratorType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The GeneratorType complex type defines an element that is

 used to hold information about when a particular document was

 compiled, what version of the schema was used, what tool

 compiled the document, and what version of that tools was

 used. Additional generator information is also allowed

 although it is not part of the official schema. Individual

 organizations can place generator information that they feel

 are important and these will be skipped during the

 validation. All that this schema really cares about is that

 the stated generator information is there.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="product_name" type="xsd:string"

 minOccurs="0" maxOccurs="1">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The optional product_name element specifies the name

 of the application used to generate the file.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="product_version" type="xsd:string"

 minOccurs="0" maxOccurs="1">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The optional product_version element specifies the

 version of the application used to generate the

 file.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="schema_version" type="xsd:decimal"

 minOccurs="1" maxOccurs="1">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The required schema_version element specifies the

 version of the schema that the document has been

 written against and that should be used for

 validation.

 </xsd:documentation>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 35

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="timestamp" type="xsd:dateTime"

 minOccurs="1" maxOccurs="1">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The required timestamp element specifies when the

 particular document was compiled. The format for the

 timestamp is yyyy-mm-ddThh:mm:ss. Note that the

 timestamp element does not specify item in the

 document was created or modified but rather when the

 actual XML document that contains the items was

 created. For example, a document might pull a bunch

 of existing items together, each of which having

 been created at some point in the past. The

 timestamp in this case would be when this combined

 document was created.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:any minOccurs="0" maxOccurs="unbounded"

 namespace="##other" processContents="lax"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ItemType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The ItemType complex type defines an element that represents

 a single CPE Name. The required name attribute is a URI which

 must be a unique key and should follow the URI structure

 outlined in the CPE Specification. The optional title element

 is used to provide a human-readable title for the platform.

 To support uses intended for multiple languages, this element

 supports the ‘xml:lang’ attribute. At most one title element

 can appear for each language. The notes element holds

 optional descriptive material. Multiple notes elements are

 allowed, but only one per language should be used. Note that

 the language associated with the notes element applies to all

 child note elements. The optional references element holds

 external info references. The optional check element is used

 to call out an OVAL Definition that can confirm or reject an

 IT system as an instance of the named platform. Additional

 elements not part of the CPE namespace are allowed and are

 just skipped by validation. In essence, a dictionary file

 can contain additional information the a user can choose to

 use or not, but this information is not required to be used

 or understood.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="title" type="cpe_dict:TextType"

 minOccurs="1" maxOccurs="unbounded"/>

 <xsd:element name="notes" type="cpe_dict:NotesType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="references" type="cpe_dict:ReferencesType"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="check" type="cpe_dict:CheckType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:any minOccurs="0"

 maxOccurs="unbounded"

 namespace="##other" processContents="lax"/>

 </xsd:sequence>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 36

 <xsd:attribute name="name"

 type="cpe_dict:namePattern"

 use="required"/>

 <xsd:attribute name="deprecated"

 type="xsd:boolean"

 use="optional"

 default="false"/>

 <xsd:attribute name="deprecated_by"

 type="cpe_dict:namePattern"

 use="optional"/>

 <xsd:attribute name="deprecation_date"

 type="xsd:dateTime"

 use="optional"/>

 </xsd:complexType>

 <xsd:complexType name="ListType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The ListType complex type defines an element that is used to

 hold a collection of individual items. The required

 generator section provides information about when the

 definition file was compiled and under what version.

 Additional elements not part of the CPE namespace are allowed

 and are just skipped by validation. In essence, a dictionary

 file can contain additional information the a user can choose

 to use or not, but this information is not required to be

 used or understood.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="generator" type="cpe_dict:GeneratorType"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="cpe_dict:cpe-item"

 minOccurs="1" maxOccurs="unbounded"/>

 <xsd:any minOccurs="0"

 maxOccurs="unbounded"

 namespace="##other" processContents="lax"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="TextType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The TextType complex type allows the xml:lang attribute to

 associate a specific language with an element's string

 content.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute ref="xml:lang" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="NotesType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The notesType complex type defines an element that consists

 of one or more child note elements. It is assumed that each

 of these note elements are representative of the same

 language as defined by their parent.

 </xsd:documentation>

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 37

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="note" type="xsd:string"

 minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute ref="xml:lang"/>

 </xsd:complexType>

 <xsd:complexType name="ReferencesType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The ReferencesType complex type defines an element used to

 hold a collection of individual references. Each reference

 consists of a piece of text (intended to be human-readable)

 and a URI (intended to be a URL, and point to a real

 resource) and is used to point to extra descriptive material,

 for example a supplier's web site or platform documentation.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="reference"

 minOccurs="1" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="href" type="xsd:anyURI"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CheckType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 The CheckType complex type is used to define an element for

 hold information about an individual check. It includes a

 checking system specification URI, string content, and an

 optional external file reference. The checking system

 specification should be the URI for a particular version of

 OVAL or a related system testing language, and the content

 will be an identifier of a test written in that language. The

 external file reference could be used to point to the file in

 which the content test identifier is defined.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="system" type="xsd:anyURI" use="required"/>

 <xsd:attribute name="href" type="xsd:anyURI" use="optional" />

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- == -->

<!-- ========================== ID PATTERNS =========================== -->

<!-- == -->

 <xsd:simpleType name="namePattern">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Define the format for acceptable CPE Names. A URN format is

CPE Specification 2.2

©2009 The MITRE Corporation. All rights reserved. 38

 used with the id starting with the word cpe followed by :/

 and then some number of individual components separated by

 colons.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:anyURI">

 <xsd:pattern value="[c][pP][eE]:/[AHOaho]?(:[A-Za-z0-9\._\-

~%]*){0,6}"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

